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Abstract— We propose a robust and efficient lung sound
classification system using a snapshot ensemble of convolutional
neural networks (CNNs). A robust CNN architecture is used
to extract high-level features from log mel spectrograms. The
CNN architecture is trained on a cosine cycle learning rate
schedule. Capturing the best model of each training cycle allows
to obtain multiple models settled on various local optima from
cycle to cycle at the cost of training a single mode. Therefore,
the snapshot ensemble boosts performance of the proposed
system while keeping the drawback of expensive training of
ensembles moderate. To deal with the class-imbalance of the
dataset, temporal stretching and vocal tract length perturbation
(VTLP) for data augmentation and the focal loss objective
are used. Empirically, our system outperforms state-of-the-art
systems for the prediction task of four classes (normal, crackles,
wheezes, and both crackles and wheezes) and two classes
(normal and abnormal (i.e. crackles, wheezes, and both crackles
and wheezes)) and achieves 78.4% and 83.7% ICBHI specific
micro-averaged accuracy, respectively. The average accuracy is
repeated on ten random splittings of 80% training and 20%
testing data using the ICBHI 2017 dataset of respiratory cycles.

Clinical relevance Lung sound classification, convolutional
neural networks, snapshot ensemble.

I. INTRODUCTION

Lung sounds convey relevant information for pulmonary
disorders including adventitious breath sounds such as crack-
les, wheezes, or both of crackles and wheezes [1]. To
facilitate a more objective assessment of the lung sound for
diagnosis of pulmonary diseases/conditions, digital recording
and processing techniques have been matter of intensive
research over past decades. Computational methods for
the analysis of lung sounds eliminate several limitations
of simple auscultation and offers advantages for medical
diagnosis [2]. Computational lung sound analysis (CLSA)
requires high accuracy algorithms (including features) for
adventitious sound detection and classification, careful eval-
uation in real-life use scenarios, and portable easy-to-use
devices without the necessity of expert interaction.

In recent years, deep learning became one of the main
approaches for adventitious sound detection and classifica-
tion in CLSA. In early computational lung sound research,
conventional machine learning methods were used to recog-
nize lung sounds such as self-organizing maps [3], Gaussian
mixture models (GMMs) [4], and support vector machines
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(SVMs) [5]. Recently, classifiers such as CNNs [1], [6], re-
current neural networks (RNNs) [7], [8], or CNNs combined
with RNNs [9] using time-frequency representations such
as MFCCs and spectrograms belong to the most successful
approaches. In addition, data augmentation, transfer learn-
ing, and ensemble methods have been explored to enhance
performance [1], [9]. The systems were evaluated on non-
public datasets such as R.A.L.E. [1] or multi channel lung
sound data [10] and public datasets i.e. the ICBHI 2017
dataset [7], [8], [11].

In this paper, we develop a robust lung sound classification
system using the ICBHI 2017 database. We extend the audio
pre-processing and feature extraction to augment the data
for the CNN model. In particular, we perform temporal
stretching/compressing and vocal tract length perturbation
(VTLP) to counteract the class-imbalance of the data and
improve model performance. In the feature processing stage,
we propose sample padding and feature splitting. Both
of them improve performance. Furthermore, the snapshot
ensemble of CNN models increases the performance at mod-
erate additional training cost. These modifications help to
outperform the state-of-the-art systems for respiratory sound
classification tasks of two and four categories [7], [8], [12].

II. ICBHI 2017 DATABASE

The ICBHI 2017 database [11] consists of 920 annotated
audio samples from 126 subjects. The audio samples were
recorded using different stethoscopes. The recording duration
ranges from 10s to 90s and the sampling rate ranges from
4000Hz to 44100Hz. Each recording is composed of a certain
number of breathing cycles with annotations of the beginning
and the ending, and the presence/absence of crackles and/or
wheezes. We use the annotations of the database to split
audio recordings into respiratory cycles. The cycle duration
ranges from 0.2s to 16s and the average cycle duration is
2.7s. The database includes 6898 different respiratory cycles
with 3642 normal cycles, 1864 crackles, 886 wheezes, and
506 cycles consisting of both crackles and wheezes.

III. PROPOSED FRAMEWORK

The proposed system includes three key stages shown
in Fig. 1. Firstly, the respiratory cycles are pre-processed
and divided into short chunks of log-mel spectrograms.
Secondly, the features are fed to the CNN model for training.
Finally, the class probabilities of all chunks of each cycle are
averaged and the argmax determines the class label.
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Fig. 1. System Framework.

A. Audio Pre-processing and Feature Extraction

Inspired from the baseline for wheeze and crackle detec-
tion [13], we perform five steps for audio pre-processing and
feature extraction of the respiratory cycles, namely: resam-
pling, segment separation and fulfilling, feature extraction,
feature normalization, and feature rolling and splitting.

1) Resampling: As audio recordings were collected with
different sampling rates, respiratory cycles are resampled to
22kHz.

2) Segment Separation and Fulfilling: The duration
(length) of respiratory cycles is different while the CNN
model requires the same number of samples in each cycle.
Therefore, we crop the cycles into one fixed-length segment
or more fixed-length segments (without overlap) if the cycle’s
length exceeds the segment length. Partially filled segments
are completed by sampling from the available cycle samples.
We call this sample padding. This is in contrast to zero
padding of partially filled segments [13].

We use a fixed length of segments in the range of 3s to
9s and compare the performance of the sample padding and
zero padding techniques (see Section IV.B. Performance).

3) Feature Extraction: As we use convolutional layers for
high-level feature extraction, the fixed-length segments of the
respiratory cycles are transformed into mel spectrograms.
Empirically, we use 512 samples as window size of the
fast Fourier transform (FFT) without overlap between the
windows. The number of mel frequency bins is chosen as
50. Logarithmic scale is applied to the magnitude of the mel
spectrograms.

4) Feature Normalization: We use z-score normalization
to scale all log mel spectrogram features.

5) Feature Rolling and Splitting:
• Rolling feature along temporal axis: It is used to shift

the feature frames with respected to the beginning of
the respiratory cycles in a cyclic manner. It helps to
simulate real-world conditions where the recording data
are not aligned with the respiratory cycles.

• Splitting feature into chunks: We split the rolled feature
frames into short chunks with the same number of
temporal frames before feeding them to the CNN model.
We compare the system performance using feature
splitting and without feature splitting as used in the
baseline [13] (see Section IV.B. Performance).

B. Data Augmentation

Similar as in [13], we use data augmentation in order to
balance the training dataset and prevent overfitting.

1) Time stretching: Time stretching increases/reduces the
sampling rate of an audio signal without affecting its pitch. It
is used to double the number of samples of the wheeze, and
both wheeze and crackle classes of the training set. We use
a random sampling rate uniformly distributed with ±10% of
the original sampling rate.

2) Vocal tract length perturbation (VTLP): VTLP uses a
random wrap factor α for each recording and maps the fre-
quency f of the signal bandwidth to a new frequency f ′ [14].
We select α from a uniform distribution α ∼ U(0.9, 1.1) and
set the maximum signal bandwidth to Fhi = [3200, 3800].
VTLP is applied directly to the mel filter bank rather than
distorting each spectrogram frame. For the original training
set and the time stretched data, VTLP is applied to enlarge
the dataset for all classes by an additional set of 3642x0.8,
3x1864x0.8, 4x(886x0.8x2), and 7x(506x0.8x2) cycles for
normal, crackles, wheezes, and both crackles and wheezes,
respectively1.

C. Neural Network and Relevant Components

1) Convolutional Neural Network: We propose a robust
CNN model of 7 convolutional compositions with different
number of filters and stride. The input shape of the model
is 50xNx1, where N is the number of temporal feature
frames (with feature splitting/without feature splitting). For
instance, a fixed-length segment of 9s corresponding to a log
mel spectrogram size of 50x386 is split into 2 short chunks
of 50x193 i.e. N of 193. Consequently, the input shape of
the CNN is (50x193x1). Ni is number of temporal frames
of the CNN feature maps. Each convolutional composition
includes a batch normalization layer (BN) and a convolution
layer (Conv2D) using ReLU activations and regularizer L2
(BN-Conv2D-ReLU). This is used as a high-level feature
extractor. The stride of 2 is used in the convolutional layer to
decrease the spatial dimension of the convolutional outputs,
i.e. time-frequency representation, by a factor of 2. It reduces
the computational time and complexity for the following
layers in the training phase as well as avoids over-fitting.
In addition, a global average pooling (GAP) layer is added
after the last convolution composition. The GAP layer allows
to reduce the number of outputs of the previous layer.
After the GAP layer, a fully connected layer of 512 units
combined with batch normalization is used for high-level
feature extraction. Finally, an output layer of 4 or 2 units
using a softmax activation is used to predict the output
classes. Table I lists the details of the CNN model.

2) Snapshot Ensemble: A snapshot ensemble allows us to
build an ensemble of multiple models at moderate additional
training cost [15]. The approach is based on the non-convex
nature of neural networks and the ability to converge and
escape from local minima using a specific schedule to adjust
the learning rate during training. In more detail, a diverse

1Factor 0.8 denotes to 80% data of the database for the training set.

761

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on September 05,2022 at 02:44:27 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
DETAILS OF THE CNN MODEL

Layer Output Kernel size Stride
Input layer 50xNx1 - -
BN+Conv2D+ReLU 50xNx64 3x3 1
BN+Conv2D+ReLU 48xN1x128 3x3 2
BN+Conv2D+ReLU 23xN2x128 3x3 1
BN+Conv2D+ReLU 21xN3x256 3x3 2
BN+Conv2D+ReLU 10xN4x256 3x3 1
BN+Conv2D+ReLU 8xN5x512 3x3 2
BN+Conv2D+ReLU 3xN6x512 3x3 1
BN+GAP 512 - -
Dense+ReLU+BN 512 - -
Dense+softmax 4 - -

set of models is snapshot during a single training run using
a cosine cycle learning rate schedule, named cyclic cosine
annealing. The optimization converges to a local minima at
the end of each cycle along its optimization trajectory. ’Good
optimized models’ at the end of each cycle are memorized
as snapshot models. They are reused as the starting point for
the subsequent learning rate cycle instead of a new randomly
initialized model.

Cyclic cosine annealing is used as annealing schedule,
which relies on the cosine function. It starts at a large
learning rate that is rapidly decreased to a minimum value
before being drastically increased again. The learning rate α
has the form:

α(t) =
α0

2

(
cos

(
π mod (t− 1), bT/Mc

bT/Mc

)
+ 1

)
, (1)

where α(t) is the learning rate at epoch t, α0 is the maximum
learning rate, T is the total number of epochs and M is the
number of cycles. Mod is modulo operation and b.c indicate
a floor operation.

The cyclic cosine annealing and losses of the training set
and validation set are shown in Fig. 1. We can see that the
training loss converges to a local minimum at the end of
each cycle. It drastically increases at a large learning rate
and gradually decrease until the end of each cycle.

For the snapshot ensemble, the class probabilities of the
ensemble are averaged over all snapshot models.

3) Focal loss: The focal loss for multi-class classification
is applied instead of the cross-entropy loss because of its
ability to deal with difficult samples. The focal loss is also
used in case of class imbalance [16]. The loss function is
a dynamically scaled cross entropy loss, where the scaling
factor decays to zero as confidence in the correct class
increases. This scaling factor can automatically down-weight
the contribution of easy-to-classify samples during training
and rapidly focus the model on samples which are hard to
classify [16], i.e. the focal loss (FL) is defined as:

FL(p, y) = −
C∑
j=1

(1− pj)γyj log(pj), (2)

where pj is the estimated probability of the model for class
j of a sample, yj is a binary indicator (0 or 1) i.e. yj = 1 if

class j is the correct class. C denotes the number of classes.
We select γ = 1.

IV. EXPERIMENTS

A. Setup

We separate the audio samples using their annotations into
a set of respiratory cycles of four classes, namedly normal,
crackle, wheeze, and both of crackle and wheeze. The data is
divided to 20% for testing and 80% for training, the training
set is further split into 80% for model training and 20%
for validation. The reported performance of the system is
the average accuracy of ten independent runs using different
data splittings.

We use ICBHI - specific criteria required by the
ICBHI Challenge to evaluate the performance. The
sensitivity, specificity, and their average, known as
ICBHI Score are as follows [8], [11]: Sensitivity =
Ccrackle or wheeze/Ncrackle or wheeze and Sensitivity =
(Ccrackle + Cwheeze + Cboth)/(Ncrackle + Nwheeze +
Nboth) for 2-class and 4-class classifications, respectively.
Specificity = Cnormal/Nnormal is similar for both clas-
sification tasks. Cs and Ns values denotes the number of
correctly recognized instances and the total number of in-
stances, respectively. Representations of crackle or wheeze
of the sensitivity measure for the 2-class case refers to all
recognized values of the crackles, wheezes, and both classes
classified as abnormal lung sounds.

Training the network is carried out by optimizing the
focal loss using the Adam optimizer at learning rate of
0.0001 and batch size of 32. The cosine annealing is used
for training snapshot models with 20 epochs per cycle. We
observe the impact of segment length, sample and zero
padding techniques, and feature splitting and no feature
splitting for the model inputs. The number of epochs is
set to 150 and the optimal model is that with the highest
validation accuracy. We use the Glorot uniform initializer
for the network weights. Weight decay regularizer is included
with a factor of 0.001. Data is shuffled between the epochs.
The cycle number of cosine annealing periods is observed
in the range of M ∈ {2, ..., 10}.

B. Performance

Table II shows classification results for segment splitting,
zero padding and sample padding corresponding to various
segment lengths. We can see that sample padding for split
segments outperforms zero padding in almost all observed
segment lengths for both classification tasks. In addition,
segment splitting into short chunks works better. We select
the setting of the best result on the 4-class classification task
for testing with snapshot ensemble i.e. we select 9s segment
length split into 2 short chunks using sample padding.

In Table III, we evaluate the snapshot ensemble with dif-
ferent number of cycles M of the cyclic cosine annealing. Al-
though using the same model architecture, different settings
of learning rate schedules cause different performance. The
table shows that the performance of the snapshot ensemble
with different numbers of cycles are mostly on par to the
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TABLE II
ICBHI SCORE COMPARISON OF ZERO PADDING, SAMPLE PADDING, AND

FEATURE SPLITTING

Segment
Length

Zero Padding Sample Padding Sample Padding & Splitting
2-class 4-class 2-class 4-class Length 2-class 4-class

3s 0.814 0.751 0.823 0.762 2x2s 0.821 0.760
4s 0.817 0.758 0.826 0.769 2x2.5s 0.821 0.762
5s 0.823 0.765 0.825 0.767 2x3s 0.818 0.758
6s 0.821 0.766 0.831 0.773 3x2s 0.818 0.760
7s 0.828 0.767 0.825 0.770 2x3.5s 0.823 0.767
8s 0.825 0.767 0.832 0.774 2x4s 0.826 0.768
9s 0.827 0.769 0.825 0.768 4x2s 0.826 0.768

2x4.5s 0.832 0.776
3x3s 0.830 0.773

best model of the observed settings in Table II. The snapshot
ensemble of 8 cycles achieves the best performance for both
the 2-class and 4-class task.

TABLE III
COMPARISON OF DIFFERENT CYCLE NUMBERS M OF CYCLIC COSINE

ANNEALING FOR SNAPSHOT ENSEMBLE

Annealing 2-class Task 4-class Task
Spec. Sens. ICBHI-Score Spec. Sens. ICBHI Score

2-cycle 0.869 0.788 0.829 0.869 0.679 0.774
3-cycle 0.870 0.801 0.835 0.870 0.679 0.775
4-cycle 0.865 0.799 0.832 0.865 0.686 0.775
5-cycle 0.864 0.795 0.830 0.864 0.686 0.775
6-cycle 0.860 0.802 0.831 0.860 0.687 0.774
7-cycle 0.868 0.796 0.832 0.868 0.688 0.778
8-cycle 0.873 0.801 0.837 0.873 0.694 0.784
9-cycle 0.871 0.790 0.831 0.871 0.679 0.775
10-cycle 0.868 0.785 0.827 0.868 0.672 0.770

TABLE IV
ICBHI CHALLENGE COMPARISON

Task Method Spec. Sens. ICBHI Score Param.
4-class MNRNN [7] 0.74 0.56 0.65 -
4-class STFT+wavelet [12] 0.83 0.55 0.69 -
4-class LSTM [8] 0.84 0.64 0.74 -
4-class Kaggle Baseline [13] 0.832 0.665 0.748 42M
4-class Our system (CNN model) 0.861 0.691 0.776 4.9M
4-class Our system (SE-8cycle) 0.873 0.694 0.784 39M
2-class LSTM [8] - - 0.81 -
2-class Kaggle Baseline [13] 0.832 0.796 0.814 42M
2-class Our system (CNN model) 0.861 0.804 0.832 4.9M
2-class Our system (SE-8cycle) 0.873 0.801 0.837 39M

Table IV shows the comparison of our models to state-
of-the-art systems for both classification tasks. We can see
that our best system achieves a significantly better perfor-
mance. Our results and results in [13] are averaged over 10
independent training/testing splittings. The number of trained
parameters of the proposed CNN model is around 10 times
smaller compared to the baseline model in [13].

V. CONCLUSIONS AND FUTURE WORK

We propose sample padding and feature splitting for
feature pre-processing. Both of these techniques improve
our classification performance. Furthermore, the snapshot
ensemble of the CNNs enhance performance of the algo-
rithm at moderate additional training cost. In addition, data

augmentation and the focal loss objective are used to increase
the model performance. Our systems outperform other state-
of-the-art lung sound classification systems for the 4-class
and 2-class tasks and achieve the best performance at 78.4%
and 83.7% ICBHI score, respectively.

Future work focuses on other deep learning methods for
classification of respiratory adventitious sounds and diseases.
Furthermore, we plan to collect more clinical data for the
multi-channel lung sound database in [10] and extend the
multi-channel processing framework to this database.
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